ZIGBEECOMM.C PSEUDOCODE
//NOTE THIS FUNCTION CLEARS MSGID

uchar gotAck(void)

{

if we got a 0x81 in first byte and 0x04 in 5th byte this is an ack, return 1, otherwise return 0. also clear the buffer so we dont get multiple acks from the same message.

}

uchar gotControlAck(void)

{

if we got a 0x81 in first byte and 0x03 in 5th byte and a 0xCD in the 6th, this is a control ack, return 1, otherwise return 0.

also clear the buffer[0] and buffer[1] so we dont get multiple acks from the same message.

}

//NOTE THIS FUNCTION CLEARS MESSAGE

uchar gotHandshake(void)

{

if we got a 3 in 0th byte and 0xCD in 1st byte this is a handshake, return 1, otherwise return 0.

also clear the buffer[0] and buffer[1] so we dont get multiple acks from the same message.

}

void sendByte(char msg)

{

block until the transmit data reg is empty and until transmit complete

if we are ready to transmit (recheck these registers just to be sure), set SCI1DRL to message to send data out.

}

void initSCI(void)

{

Set baud rate to 9600 with SCI1BDH=0, SCI1BDL=0x9C

Enable Transmit and receive on SCI1CR2

}

void printBuffer(uchar ct)

{

 print everything in the buffer

}

uchar receiveByte(void)

{

set state to need 0x7E

if we have data coming in (RDRF flag on SCI1SR1 is set)

clear SCI1SR1 flag

read byte form SCI1DRL

otherwise

set goodMsg to bad and return 0 immediately

switch (state)

need0x7E:

if we got a 0x7E, state=needMSBLen

needMSBLen:

if we got a 0 (MSB always zero for our project because messageLen<128), state = needLSBLen

otherwise, back to 0x7E state

needLSBLen:

if we got a number > max msg length,

move back to 0x7E state

otherwise

reset ct to 0, sum to 0, length to this byte,

move to readingMessage State

readingMessage:

if we havent gotten length bytes yet,

record this byte in teh buffer, add this byte to the running sum, incr ct

otherwise (this is the checksum)

increase sum by readByte

if sum is 0xFF, set goodMsg flag to 1, otherwise set it to 0.

move back to 0x7E state.

return;

void sendMessage(uchar* data, uchar len, uchar addrMSB, uchar addrLSB)

{

if canSend flag is not high, return

otherwise, set can send flag low

for each byte in msg length, save this message away as teh last message

reset command timer to 200ms for next retry.

increment frame id

send a 0x7e byte

send a 0 byte

send a 5+len (because Length of frame data is 5 bytes (api id, frame id, destaddr msb, dest addr lsb, option) + message length

send a 1 byte (APIID For sending)

add this 1 to the checksum

if the frame id is 0, increment it because 0 means something special

send the frame id byte

add frame id to checksum

send addr msb and add it to checksum

send addr lsb and add it to checksum

send obptions byte and add it to checksum

for each byte in the message, send that byte and add it to checksum

subtract the checksum from 0xFF and send that as well.

}

