LABFSM.C PSEUDOCODE : MAIN STATE MACHINE

uchar ledTable[8];

void initAll(void)

{

initialize the led map because LEDs were wired not in order

Led map is: 0:1, 1:2, 2:3, 3:4, 4:0, 5:5, 6:6, 7:7

Init the ES timers to 1ms rate

init pins, init SCI, init event checkers, re init timers just in case.

}

void sendControlReq(uchar hzvNum)

{

set sendData to ED 03

set current HZV num to the param.

if we got a valid hzv num, SCI send the message to connect to this hzv.

}

U1-4 are left drum, U3-7,T0 are right drum from bottom to top.

void advanceLEDs(void)

{

turn off the current LED,

if the currentLD is greater than 3, increment the LED num, otherwise decrement it so it looks like lEDs are going in a circle

if the LED num went over 7 reset it to 3 to start first column again.

if led num went less than 0, reset it to 4 to start 2nd column

turn on the curr led.

}

void advanceCalibLEDs(void)

{

a second LED sequence:

set the LEDs on current side all on.

move current side to the other side.

set LEDs on this new side all off.

}

void offAllLEDs()

{

for each led 0 to 7, turn off the LED

}

void offLED(uchar LED)

{

get which LED we actually mean from LED table map.

if we want LED 0, this is on port T, turn T0 off.

otherwise, turn off the LED num on port U.

}

void onLED(uchar LED)

{

get which LED we actually mean from LED table map.

if its 0, use port T to turn T0 on, otherwise turn U on at this LED num

}

level is between 0 and 3

void setLEDLevel(uchar level, uchar side)

{

if we are on the left side, set the range from min= 4 to max= 4+level,otherwise use 0 to level

for each led from min to max, turn it on if its below the level we asked for turn it off otherwise.

}

void lightDrumLEDs(uchar left, uchar right)

{

set the led level on the left to be which bucket is sent in as param for left

same for right. this reflects how fast you are beating each drum on the LEDs.

}

#define LED_TIME 200

ES_Event RunLabFSM(ES_Event ThisEvent)

{

initstate:

initEvent:

init all, start LED timer, move to no controller state

noControllerState:

controlReqEvent:

send the control request to boat given by the event param

start the timeout timer for 3000ms

controlBypassEvent:

send control req to the boat given by event param, start timeout timer

dont wait for handshake, move to controlling phase,

stop the LED timer, turn off all LEDs, turn on debug mode.

controlAckEvent: (handshake received)

if we are talkig to a valid hzv num, move to controlling state, turn off all LEDs, turn off LED timer, start ack timer 1000ms, move to controlling state.

timeoutEvent:

if this is the command timer, send the control request again

if this is the timeout timer, stop the command timer, and reset the currhzvnum because we give up on this one

if this is the led timer, if background drum calibration is done, advance the LEDs to show we are searching for a boat. if its not done, use the calibration led sequence.

either way, if we got the led timer, reset the LED timer again because leds always blink same rate just different pattern in no controller state

controllingState:

AckEvent:

reset ack timer to 1 second

timeout event && not in debug mode: (dont time out on debug mode)

move to no controller state, reset hzv number to NUM HZVs, init LED timer again

Command timer Event:

get the current command from drum event handler, light drum leds appropriately.

send a "0x02 speedbyte dirbyte atkbyte 0 0 0" message

(get command does a few other things like resetting the timer)

ControlBypassEvent:

if we get a second control bypas event in controlling state, we print all the calibration data out.

This is so we can collect data outside then press spacebar at computer to see it all after we plug into term

No matter what, return returnevent.

}

