EventCheckers.c PSEUDOCODE

void initCheckers(void)

{

 set lastTime timers to current time.

 reset currHit, bg, speedState arrays.

}

uchar Check4Ack(void)

{

get the current time, if enough time has passed and we didnt overflow time

if we got an ack from the boat, post an ack to the SM and set the lastAckTime to this time

if we got a control handshake from the boat, post it to the SM and set the lastAckTime to this time

}

#define TIME_AFTER_LAST_TICK 200

uchar getPhoneReq(void)

{

static initialization: begin in state 1, counting at 0, lastCtTime at 0, ct at 0, firstDigit is a 0, lastPhoneState is 1

set ret val to NUM_HZVs as default return val

check whether there is contact on the phone gear

if we just received a falling edge on the phone, increment ct, set the latest count received time to this time.

either way, update last phone state to hi or lo based on phone gear status

if they hangup, reset the contact ct and reset state to 1.

if the time since the last tick is sufficiently large and ct >0, we have received one digit, so read it in.

if state is 1 (this is the first digit),

if we got a number greater than 1 and not equal to 10,

return the number instantly

otherwise

set the first digit to this number, move to state=2 for second digit

if the state is 2 (second digit)

fix the first digit to be 0 if it was 10 (because there are 10 ticks for dialing a zero)

fix the second digit to be 0 if it was 10

prepare the return val (= 10* first digit + second digit)

if the return value is greater than the total number of HZVs, we got a bad number, so reset the state and return NUM_HZVs

otherwise, we got a good boat number, reset the state and prepare to return

return the return value at the end

}

uchar getKeyboardReq(void)

{

 if the keyboard was hit, return our boat number, otherwise return the number of HZVS(an invalid boat num)

 function used for testing purposes

}

uchar Check4ControlReq(void)

{

get the current time and set the return val to 0.

if enough time has passed, check the keyboard for events.

If the keyboard saw an event, post controlbypass event to the boat (this is for debugging when phone/handshake wasnt working) and set retval to 1 to signal we got an event.

Now check the phone to see if we dialed a valid boat number,

if we got a valid number, post a controlreq to the SM with the hzv num as the parameter of the event and set retval to 1 to signal the checker got an event.

}

uchar Check4NewBytes(void)

{

get the current time.

Call receivebyte to get any new bytes that are waiting (this is just polling to get new data)

return 0, this is not a real event checker, its just polling for new bytes.

}

int abs(int a)

{

 return -a if a is less than 0, a otherwise.

}

used to break speed commands up into 4 buckets, 0-3 with 0 being stop and 3 being fastest.

parameter is which motor we are talking about.

char getBucket(uchar i)

{

get the current time, and the time between the last and 2nd to last hits on the drums we saw.

if we havent gotten a drum hit in over a second, return 0 bucket

otherwise, if the hits are within 300ms of each other, return bucket 3, 500ms ->bucket 2, 500-1000ms ->bucket 1

}

void getCommands(char* speedByte, char* turnByte)

{

check which drum rate bucket each of our drums is in so we know how fast to spin each motor

calculate the difference between the drum buckets and multiply by 40 to scale to -120 to 120 and output this as the turn byte

if reverse is down, set the speedByte to the max of the left/right drum buckets, negated.

if reverse is not down (straight), set the speedByte to the max of left/right drum buckets.

scale speedByte by 40 to make it in the range -120 to 120.

}

void registerHit(uchar i,long currTime)

{

set the 2nd to last hit time to the last hit time

set the last hit time to the current time to register that a new hit was made on drum i

}

uchar bgIsDone(void)

{

 return whether bg noise calibration is complete yet.

}

void printBgSaves(void)

{

print all the data saved for drum mic background noise calibration

so we can run it outside and plug it into the terminal afterward and see it.

calibration test function

}

uint absDiff(ulong a, ulong b)

{

 returns the abs(a-b) with unsigned variables

if a > b return a-b, otherwise return b-a

}

uchar Check4Drum(void)

{

staticly

begin by setting the time per event check call to 50ms (later it will change)

init other variables to 0

if not enough time has passed between event checks, return 0

check the AD pin on each drum.

if we are in state 0, we are collecting data for noise calibration.

Wait until we get NUM_IN_A_ROW points, then begin recording values (because at start when system is turned on, data is garbage).

If we get a data point we know is an outlier (less than analog value 300), or the readings havent steadied out (change > 10), throw the point out, and reset our

last measurement (bg) to this measurement.

increase numPts by 1

if we are recording data points, save the pointSaves (right drum uses 2nd half of bgSaves, left drum first half) and add the analog value to bg counter.

icnrease numPts.

if we have gotten enough samples, divide the total background values by the number of points we got to get the average background noise.

set state to 1 to move out of calibration, change the frequency this method is called to 5ms between calls, reset the hit counters, save teh last reverse state so we can tell if the reverse was pressed.

mark background calibration as done.

now reading analog drum hits:

for each of the 2 drums:

get the state of the reverse button. if we just hit the reverse button, reset the last hit time to 0 so we will stop moving right after button hit

if we get a drum hit outside the threshold of the background value, we probably have a hit. Increase the number of hits on this drum

(a hit is defined as an analog read during this method called every 5ms that is outside the noise threshold).

If this is the first hit, set the hit incoming flag. also note the time of this first hit (and only the first hit)

Classifying hits:

If enough time has passed since the first hit we receive, classify this series of "hits" as a drum strike or not.

if we got enough hits on drum 0, drum 0 was probably hit. If we got more than half of these hits on drum 1, drum 1 was probably also hit simultaneously.

if we got enough hits on drum 0 but less than half on drum 1, its probably just coupling noise, so ignore drum 1. Do the same vice versa for the other drum.

if we decide a hit was made, call register hit.

Finally, if we finish classifying, set hitinc to 0 to end classify period so a new one can start, and set the number of hits we got on left and right to 0 again.

set the last rev state to the current rev button state.

set the last ev check time to this time.

}

